Semester full of Digital Making !

Wow the semester has flew by. I remember taking my disability design course and being heavily encouraged to take this course from my professor Dr Deana McDonagh. I heard countless success stories and instantly got interested. I remember the entire process  of sending a resume and asking access from the instructor. It made the course feel even more official and selective. I wanted to take the course because it could present even more fabrication resources and help me in product development in my startup.

Expectations…

Initially I didn’t necessarily know what to expect. From the course description I thought maybe the the class would be very hands on and explore various methods of fabrication. Even with these little to no expectations the course don’t over promise anything. The course itself wasn’t perfect but it was an overall great experience. It challenged us to think outside the box and look at what we usually consider problems as areas of opportunity for innovation. The structure of the course prompted us to use the parameters set and essentially work through things, which allowed us to learn even more. This style of teaching could go one of two ways. The class could be way to lose, which causes confusion and lack of understanding of expectations. Or it could be how this course went and really give students the opportunity to explore, fail, plan, and execute on an idea.

This course further enhanced some fabrication skills I already have and taught me some fairly new ones as well. As an industrial designer I’m constantly doing project and solving problems. Design thinking, user centered design, empathic design are all things this course subtly hinted in throughout the semester. The workshops enabled us to gain new skills and learn processes. Many of, if not all the guest speakers, provided meaningful insight throughout the semester as well. There are so many takeaways from this class.

Solestice

I was partnered with two bright young women from the college of business. I couldn’t have asked for a better team. We had a great dynamic and right away knew what we wanted to do for the remainder of the semester project.Through the many conducted interviews and mentors stories we gravitated towards Jenna. She shared with us the story of a time where she slipped on ice immediately after exiting her car. This happened all because she can’t wear boots due to the heavy nature of them. This prevents users like Jenna  and other prosthetic users from wearing them as their residual limbs are not strong enough to carry the amount of weight the boot has. This is where Solstice was birthed. We aimed to figure out a way for Jenna to increase traction without adding adding additional weight to her shoes. Our main goal was To create an attachable, lightweight shoe tread that can be used to travel in a variety of terrains.

Low Fidelity Prototype

My group and I brainstormed countless times trying to figure out how to make this idea into a real thing. We’d sketch  ideas and somehow came up with the thought of incorporating spikes ( like in track shoes) it would help with traction. Unfortunately after creating a low fidelity we realized that our user may be required to take said device off when walking indoors. We also wanted to make it as easy to use as possible, while providing a comfortable fit we thought to use velcro. This set us up perfectly to further ideate on this idea and create our very own functioning prototype at the makeathon.

At the Make-a-thon itself team Solstice focused on three main components of creating this product:  Arduino, molding, and attaching. The arduino portion was super cool and challenging. It was my first time coding and working with circuitry. Essentially this would add a unique tech factor to our tread that would allow users to have a sense of force feedback. From research we found prosthetic users have issues shifting weight which can lead to gaits abnormalities. This small pressure sensor would give them that data and in term help prevent this from happening. The design itself was fairly simple. We coded an Arduino Uno to illuminate LED lights that indicated pressure being applied. To create the pressure sensor, we sandwiched a piece of foam with two pieces of copper. Ideally, we wanted for there to be three lights, each indicating where the user is putting pressure on the tread. This would enable the user to ensure they are putting enough weight on their prosthetic to maximize stability.

In terms of creating the tread it we wanted to use a molding compound. This would allow for a lightweight thread, but ensure a grip tread form that resembles that of your regular high traction shoe. We created a mold of a shoe outsole. During this process, we coated the shoe in baby powder and mixed the molding compound to a viscosity similar to pancake mix. We held the shoe down until the mold dried. Following, we used a hot glue gun to fill in the mold with thermoplastic material. After the mold was completely filled, we used a heat gun to smooth the top of the sole, making sure the edges were slightly taller than the inside of the sole. The thermoplastic material we used was similar to silicone and, per our research, is a material that creates enough friction to prevent falling on ice.

For the sake of time and resources we opted to utilize velcro for our attaching method. It wasn’t the worst choice but also wasn’t the best as it came with its own constraints.

Overall I really did enjoy this course. From the challenging nature of it to its looseness it was a great experience. I got to learn new and exciting skills. I got to meet some amazing people. Most of all I got to make something with newly found campus wide resources. I’ve really grown as a individual because of this course. I find myself a better teammate. The collaborative portion of this course really ties teams together and promotes all hands. Hopefully you’ll see a team Solstice sole on the market. We really did nurture this product and can’t wait to see it reach its full potential. Never stop making!


Make-a-thon

This week we got an introduction to the Make-a-thon. The participants of this event go beyond our Digital Making seminar course. Its expanded to Industrial design students from Dr. Deana McDonagh and Jim Kendall’s course, as well as students from Jeff Ginger’s Makerspace. This pre-event to the actual Make-a-thon gave us a general overview of what was going to take place leading up to the weekend long event. Later during the session there was a panel of a few returning experts and a few new ones. Some new faces were Isaac, John, and Steve. They all spoke about their disabilities and the daily frustrations they face. The panel even discussed some of the unique ways they’ve adapted to make the best of their situations.

John’s sock with three attached loops
Joh’s sock with three attached loops

Above is an image of one of John’s sock. I thought this was so simple, yet very effective. Apart of John’s condition is very minimal grip strength. So task like putting on socks or buttoning a shirt is difficult to him. A simple life hack he came up with was sewing loops on the outer edge of his sock, which he can fit around his fingers and pull on the sock. It crazy to think this is all it took and it making a huge difference.

Steve from the panel also gave us an overview of Clark Lindsey, which is a  premier retirement community for today’s accomplished adults. From the presentation he gave I found there to be quite some opportunity in this specific sector. He put a heavy emphasis on fall prevention. Maybe we can design some sort of new innovative thing around this opportunity.

The last part of the Make-a-thon pre-event was a social portion. This time was for everyone to meet and talk amongst each other. Since we’ve been working on our project for sometime  used this portion to to talk with some of the new experts and students to see if any wanted to get involved. We did meet a potential new team member from Jeff’s makerspace seminar. She seemed very interested in what it was Solestice is trying to do. After this It really just turned into a team meeting where we mapped out what we needed to from the session up until the Make-a-thon itself.